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1 Introduction

Constructing public transit infrastructure can improve labor market opportuni-

ties by reducing commuting costs. However, estimating the commuter benefits of new

transit infrastructure is challenging because of endogenous worker responses and land

market effects. I attempt to account for endogenous worker behavior by constructing

a novel Quantitative Spatial Model (QSM) using detailed, block level, commuter flow

and travel time information. I apply the model to estimate the labor market effects of

a new rail transit line on the island of O'ahu, Hawai'i.
The first segment of O'ahu’s rail system began operating in 2023. The proposed

benefits of building rail on O'ahu included (1) a reduction in commute duration for

workers, (2) an increase in public transit mode share, and (3) an improvement in labor

market outcomes through improved worker access to jobs. I propose and estimate a

model that tests for these benefits, accounting for endogenous worker decisions. I find

evidence of the rail system achieving goals (2) and (3) but not (1).

The general equilibrium effects of rail are unknown without accounting for endoge-

nous worker decisions. I collect detailed, block-level commute time data and block-level

bilateral commuter flow data. Through a QSM, I estimate worker preferences across

commuting routes and modes, for both low and high-income workers. I then apply

these parameters to estimate the general equilibrium effects of the new rail infrastruc-

ture on commute times, public transit mode share, and employment. Under static

worker choice, I find that rail produces commute time savings for the average worker.

After accounting for endogenous decisions, I find that the rail system leads to a small

increase in the average commuting time on O'ahu, as workers substitute away from

cars and towards transit, and substitute towards longer routes. Despite failing to re-

duce average commute time in spatial equilibrium, I find the rail system leads to an

increase in public transit mode share and in the aggregate employment rate.

The theory that spatial isolation from jobs may induce joblessness was proposed

as the spatial mismatch hypothesis in Kain (1968). Andersson et al. (2018) provided

recent empirical work that confirmed the continued importance of spatial mismatch in

the US. Some papers have relied on natural experiments in which transit access changed

exogenously to identify causal labor market effects (Holzer et al., 2003; Tyndall, 2017),

these studies found a positive impact of transit access on employment.

Longitudinal data on individual workers is not typically available to researchers

analyzing the effects of transportation systems. As a result, accounting for endogenous
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household location decisions typically relies on directly modeling the choices of workers.

QSMs have been implemented to estimate aggregate and distributional benefits of new

urban amenities, particularly transportation systems. The basis for spatial urban mod-

els comes from the monocentric city model (Alonso, 1964; Muth, 1969; Mills, 1967), and

the polycentric city model (Fujita and Ogawa, 1982). Workers accept higher commut-

ing time to access areas with lower housing costs. In a spatial equilibrium, these costs

and benefits must lead to an equalization of utility over space. The extension of the

basic urban model to incorporate structural modeling approaches, based on the discrete

choice methods of McFadden (1973), was developed in Anas (1981) and Epple and Sieg

(1999) and further extended in several papers including Bayer et al. (2004), Sieg et al.

(2004), Bayer et al. (2007), Bayer and McMillan (2012), Ahlfeldt et al. (2015), and

Behrens and Murata (2021).

This paper relates most closely to a recent literature on estimating benefits of

transit infrastructure using structural neighborhood choice modeling. Severen (2019)

examined the impact of rail transit on the labor market in Los Angeles. Tyndall

(2021) analyzed light rail transit (LRT) systems across four US cities, and Chernoff and

Craig (2022) examined distributional effects of a rail expansion in Vancouver. Each of

these papers implemented a neighborhood choice model to understand the interaction

between housing markets, labor markets and endogenous worker decisions in estimating

the effects of transit infrastructure. I incorporate features of these models.

I describe and apply a new model to a data set with more spatial detail than has

been used in past literature. I incorporate block-level bilateral matrices for both com-

muter flows and a block-level data set of travel times from an online wayfinding service.

As discussed in Dingel and Tintelnot (2023), urban discrete choice models using gran-

ular data can suffer from estimation bias if the observed commute matrix is “sparse,”

meaning there are few observed commuters relative to the size of the commute matrix

being estimated. I provide some innovations on this topic by proposing a new, nested

estimation strategy. I reduce matrix sparseness by pooling multiple years of data and

collapsing flow information from the census block to the census tract level. However,

given the availability of block-level information, I then reconcile worker location distri-

butions to specific blocks within tracts by nesting a housing market and labor market

within tracts. This is the first paper to make use of block-level information in an urban

discrete choice model, while directly addressing the issue of matrix sparseness.

A specific focus of this paper is to predict the role of long-run endogenous sorting

on the impacts of new rail infrastructure. By executing a model across several stages of

2



a rail phase-in period, I estimate the relative role of direct commuting cost reductions

and the role of endogenous household location, mode, and labor market decisions. I

recover estimates of rail’s impact on average commuting time, transit mode share, and

the island-wide employment rate. I find that accounting only for direct commuting cost

savings fails to capture the aggregate impact of transit. Workers with strong preferences

for using transit are likely to sort toward stations (Glaeser et al., 2008), while workers

with a preference for driving will sort away from stations, repelled by rising land costs.

Low-income workers are more likely to use transit but are also sensitive to rent increases,

meaning the effect of a local public transit amenity that raises neighborhood demand

might attract or repel low-income workers, depending on the magnitude of the two

effects (Tyndall, 2021). The QSM approach attempts to account for these competing

effects and estimate the total island-wide impacts of rail.

The paper will proceed as follows. Section 2 describes the empirical setting. Sec-

tion 3 provides a discussion of data. Section 4 describes the structural estimation

methodology. Section 5 outlines the model solution method. Section 6 provides results

and Section 7 concludes.

2 Rail Transit on O'ahu

I study O'ahu’s first public transit rail line. The system has a so-called “hybrid-

rail” design, combining features of both light and heavy rail systems. The system is

elevated, with track and station platforms supported on concrete pillars. The full line

is planned to include 21 stations, which span 31 km. The western edge of the system

extends to the Kapolei neighborhood, and the easternmost station is located at Ala

Moana, a major mixed-use area in the urban core of Honolulu.1 The opening of the

full 21-station line is set to be completed in stages, with the westernmost 9 stations

opening in 2023, the next 4 stations opening in 2025, the next 6 stations opening by

2031, and the 2 easternmost stations opening at an unconfirmed later date. I will refer

to the initial nine stations as Phase 1 and the remainder of the stations as Phase 2. I

provide analysis on the effects of Phase 1 as well as the full line.

Figure 1 shows the locations of the rail stations on the island of O'ahu. The path of

the rail line roughly follows the H1 Interstate Highway. The H1 serves commuters from

1The precise location of the easternmost stations are the topic of debate and could be revised.
Currently, construction has begun to Ka'ākaukukui Civic Center, with the two easternmost stations
still in the planning phase.
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the west side of the island who commute into the urban core of Honolulu. East-bound

traffic on the H1 is severe during rush hour, which served as a motivation for providing

a high-capacity public transit option on this route. Household incomes on the west

side of O'ahu are generally lower than on the east side of O'ahu, meaning the proposed

rail route is aligned to provide access to the downtown job center for working-class

populations.

Figure 1: Location of Rail Stations on O'ahu and the H1 Highway

The H1 Interstate Highway is shown in as a black line. Phase 1 stations opened in 2023. The 10
westernmost Phase 2 stations are scheduled to open by 2031, with the final two stations opening at a

later date.

The history of passenger rail planning on O'ahu spans several decades. City doc-

uments discussing the prospect of an urban rail line can be found dating back to the

1960s. In 2005, funding was secured to begin construction of the project, and in 2011

construction began. The rail project has experienced significant delays in construction

and large cost overruns. Even after construction began, there was significant political
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uncertainty regarding whether the project would be completed. For example, Honolulu

mayoral campaigns from 2004 to 2020 centered on whether to complete or abandon con-

struction of the rail line. Political opposition to the construction of rail often centered on

concerns with cost overruns. When construction began, capital costs were expected to

be $4 billion, with $1.6 billion coming from the Federal Transit Administration (FTA).

Projected costs rose steadily over the following years. The current projected cost of the

line is $12.4 billion. Even considering the high costs of transportation infrastructure

throughout the US (Brooks and Liscow, 2022; Gupta et al., 2022), the O'ahu system

construction costs are extremely high relative to comparable cities, in terms of either

total cost or costs per system-mile.

Prior to the opening of the rail line, the rail corridor was served by significant rush-

hour bus service. O'ahu provides relatively extensive bus service compared to similar

sized US cities. However, buses travel within general traffic in almost all cases, meaning

they are subject to traffic delays and accompanying trip duration uncertainty.

The island of O'ahu is coterminous with the City and County of Honolulu.2 O'ahu

provides an excellent study location for several reasons. First, as a small island, the

relevant local labor market is cleanly defined. Typically, studies of urban labor markets

impose assumptions to define a study area, often adopting Census boundaries. In the

case of O'ahu, the boundaries of the study area are clear and there are no border-

area spillover effects to be considered. Access to O'ahu from the neighboring Hawaiian

Islands is only possible by air travel. O'ahu is small enough that commuting is possible

across the entire island, though large enough to be comparable in size to the commuting

sheds of other US metropolitan areas. Second, the O'ahu rail system represents a

significant infrastructure investment and the first rail connection on the island. The

lack of existing rail infrastructure makes the treatment definitions clearer, as I do not

need to consider network effects for a preexisting rail system.

O'ahu shares many urban form characteristics with midsized American cities, such

as significant highway infrastructure and primarily single-family zoned land use, sur-

rounding a relatively dense urban core. Demographics on O'ahu are unique in several

dimensions. Median household income on O'ahu ($87,700) is higher than the median

household income across US metropolitan areas ($69,600), while the college education

rate is similar. O'ahu has a high Asian population share (43%) and a high share of

Native Hawaiians and Pacific Islanders (10%) when compared to other metros in the

2Counties in Hawai'i do not contain distinct municipalities; rather, they operate under a combined
city-county system.
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US. The prerail rate of public transit commuting on O'ahu (7.2%) is about 40% higher

than the average rate across other metros. Demographic information for the study area

is provided in Table 1, with comparisons to average US metro conditions and the US

as a whole.

Table 1: Demographic Characteristics of Study Area

O'ahu US Metros USA
Population 979,682 284,298,061 331,449,281
Median household income ($) 87,722 69,591 64,994
College education rate† (%) 35.7 34.7 32.9
Labor force participation (%) 66.4 64.3 63.4
Unemployment (%) 2.6 3.5 3.4
Median age 38.2 38.0 38.2
Owner-occupancy rate (%) 57.5 63.0 64.4
White (%) 20.2 68.2 70.4
Black (%) 2.5 13.4 12.6
Asian (%) 42.6 6.3 5.6
Native Hawaiian or Pacific Islander (%) 10.0 0.2 0.2
Hispanic (%) 10.0 20.6 18.2
Average commute time (minutes) 28.0 27.5 27.0
Commuter mode share:

Drove alone (%) 78.6 83.2 83.8
Public transportation (%) 7.2 5.2 4.8
Walking (%) 5.6 2.5 2.6

Data are from the 2020 five-year American Community Survey.
† Bachelor’s degree or above, among population 25 years and older.

3 Data

I construct a route level data set, with granularity at the census block level. I

rely on block-level bilateral commuting flow data from the 2014–2021 Longitudinal

Employer-Household Dynamics Origin-Destination Employment Statistics (LODES)

and a block-level commuting time matrix provided through the transportation rout-

ing firm Travel Time. Blocks are defined according to 2010 US Census boundaries.

LODES breaks out commuter flows by worker income. I categorize workers into

two worker types, low- and high-income workers, relying on the cut-off values used in

LODES. Low-income workers are defined as those earning less than $40,000 annually,

and high-income workers as those earning more than this amount.3 Across the 2014–

3Using the $40,000 threshold is a limitation of the LODES data. I refer to “low” and “high”
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2021 LODES, I observe 1,908,183 unique block-to-block commutes. Low-income work-

ers cover 1,308,668 unique routes, while high-income workers cover 1,055,170 unique

routes. The routes include 12,136 unique home locations and 8,276 unique work lo-

cations. I collapse the eight years of data to create a cross-sectional matrix, in which

the number of commuters using a route is the average across the 2014–2021 period.

Figure 2 visualizes the block-to-block flows. Notably, a large share of O'ahu’s workers

commute within the corridor that will be served by rail.

Figure 2: Block-to-block Commuter Flows

| - Commute Route - Rail Station Site

Each line connects a worker’s home and work location. Darker lines indicate that
more workers share that commute route.

I gather extensive trip level data from the transportation routing firm Travel Time.

For any pair of latitude and longitude coordinates, the Travel Time Application Pro-

income workers for simplicity, but “high-income” workers might be more accurately considered as
mid-to-high-income workers.
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gramming Interface (API) returned an estimate of the commuting time. I queried the

API for every block-to-block route on O'ahu. The API incorporates predicted traffic

and transit schedule conditions for a selected time. I set parameters to collect data for

the quickest possible route that would allow a worker to get to their destination by 9:00

am on a Wednesday in order to match likely commuting time. I use the geographic

centroid of each census block as the origin and destination point, and calculate driving

and transit times for all block-to-block pairs.

I first collected a full matrix of commute times in October 2021, prior to the

opening of the first segment of the rail line. In August 2023, I again collected a full

travel time matrix, which reflected conditions that included the first segment of the rail

system. Having both pre- and post-treatment commute time matrices allows for the

calculation of travel time savings brought on by the rail line.

To my knowledge, this is the most granular data set of commuting time matrices

that has been used in the related literature. Pedestrian access to transit stations is an

important determinant of transit use. Using blocks rather than tracts better captures

spatial access to transit nodes, which can be obscured when using tract centroids. As

one example, the easternmost station in the system, “East Kapolei,” is located 7.2 km

from the geographical centroid of it’s surrounding census tract, and 3.7 km from the

population-weighted center of that census tract. Both of these distances are too far to

walk in a reasonable commute. Therefore, a census tract based model would be poorly

suited to reconcile observed commutes. Using census blocks overcomes this issue, as

there are many blocks within walking distance of the station.

Table 2 provides average travel times for driving and public transit across all one-

way commutes. Across all block-to-block pairs, the average driving time is 23 minutes,

with an average distance of 18.5 km. When weighting routes by the number of workers

who actually complete that commute according to LODES data, the average worker-

weighted driving time is 19.5 minutes, and the average distance is 15.0 km. The average

public transit commute time for block-to-block routes where transit is available is 62.6

minutes, or 54.7 minutes when weighted by the number of commuters. The average

commuting times calculated with Travel Time data are comparable to estimates from

the American Community Survey (ACS) reported for O'ahu. After the first phase of

rail is completed, and ignoring endogenous worker behaviors, I estimate the average

public transit commute time across all workers falls by 1.3 minutes.

Figure 3 shows the relationship between driving times and public transit times for

the data covering the period before the rail system was running. For nearly every route,
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Table 2: Summary Statistics, Average Route Level Data

Travel Time (mins) Travel Distance (km)
All Observed Routes

Driving 23.0 18.5
Transit, pre-rail 62.6 -
Transit, post-Phase 1 rail 61.0 -
Transit, post-Phase 2 rail† 57.9 -

Weighted by Workers
Driving 19.5 15.0
Transit, pre-rail 54.7 -
Transit, post-Phase 1 rail 53.4 -
Transit, post-Phase 2 rail† 50.7 -

Average route characteristics among observed commutes on O'ahu. Public transit figures ignore
routes that cannot be completed by transit or would take more than two hours one-way.
† Phase 2 transit times are approximated using the the method described in this section.

driving provides a shorter trip time than public transit. For 96.3% of routes, public

transit takes more than twice as long as driving; for 74.7% of routes, transit takes more

than three times as long, and for 48.8% of routes, transit takes more than four times

as long.

Figure 4 provides examples of the trip time data, showing the area that can be

covered by driving and public transit for an example origin location. The left images

show the area that can be covered within 30 minutes, while the right images show the

area that can be covered in one hour. Comparing the top and bottom panels, the area

accessible by driving in a given time is drastically larger than the area that can be

accessed by public transit. Almost the entire island is accessible in a one-hour drive,

while only a small fraction is accessible through a one-hour public transit commute.

The figures reflect prerail commute times.

I restrict the data set by dropping any commute that is estimated to take more than

two hours one-way, as these are unlikely to be viable daily commutes. This restriction

applies only to public transit commuting as there are no two census blocks on O'ahu

that are more than two hours apart by driving.

Figure 5 displays the change in the average public transit commute time from

every block with a worker population. Panel A shows the reduction in public transit

commute time generated by the opening of the first phase of the rail system. I calculate

the difference in commuting times between the two rounds of travel time data collection.
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Figure 3: Drive Times vs. Public Transit Times for Observed Commute Routes, before Rail

Each point represents one commuting route. The red line would indicate trips where private vehicle
and transit commute times are equal. The figure displays all routes that can be completed in under

two hours by both driving and public transit (569,339 observations).

The result gives me precise time savings brought on by the implementation of the first

phase of rail service. Because the second phase is not yet operating, I do not have access

to a full matrix of travel times under the scenario of full rail service. I approximate the

time savings produced by Phase 2 by first calculating the average reduction in public

transit commuting time experienced by any route where the straight line connection

between origin and destination bisects the Phase 1 rail corridor, where the corridor

is defined as the area within two kilometers of the rail line. I find the average route

bisecting the Phase 1 corridor experienced a 6.0% reduction in public transit commuting

time. I apply this measure to Phase 2, by reducing public transit commute times by

6.0% for any route that bisects the Phase 2 rail corridor. I will consider a scenario where

the introduction of rail also impacts driving times along the rail corridor (Appendix

A).

Between collecting pre- and post-rail commute time matrices, some bus routes

were altered. Changes included the removal of some bus routes that serviced the same

corridor as the rail system. Some other routes were altered for unrelated reasons as part
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Figure 4: Job Locations Accessible from One Origin Location

30 Minutes 60 Minutes
Driving

Transit

� - Reachable � - Not reachable � - No employment - Origin

Block-level information is presented, showing which areas are reachable through driving and public
transit from an origin location placed in Honolulu’s city-center. I find that driving provides dramati-
cally more job opportunities to a worker when compared to using public transit. The displayed data
capture the prerail period.

of regular system optimization efforts by the local transit agency. To focus analysis on

the impact of rail, I clean the data by assuming rail did not increase transit time for

any pair of blocks. For every route, I assume the post-rail travel time is the minimum

of the observed pre or post-rail time. I also assume that transit time reductions only

occurred for routes that pass through the rail corridor, holding other routes constant

to pre-rail estimates.

The model will incorporate estimates of local housing costs as a parameter. I

approximate annualized local housing costs for each census tract in the model. I use

deed transfer records from O'ahu. The data covers every real estate transaction from
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Figure 5: Reductions in Average Public Transit Commuting Time Due to Rail

A. Phase 1

B. Phase 2

� - No workers - Rail Station

Phase 1 represents the effect of the opening of the westernmost nine stations, while Phase 2 represents
the opening of the entire 21-station system. Estimates apply to the unweighted average commuting
time difference across all block-to-block pairs for public transit routes.

2010–2021. I calculate the median sales price of a home at the census tract-level, assume

an annual price-to-rent ratio of 20, and assign annual housing costs to each block based
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on which tract it is located in. I estimate costs at the tract level rather than block

level to reduce noise in areas with few transactions. Estimated annual housing costs

calculated in this way range from $11,750 to $137,397, with a median of $34,975 (or

$2,915 per month).4 Because the model encompasses both renters and owners, this

method gives a more accurate approximation of spatial variation in housing costs as

compared to survey data on rents.

The model introduced below will also incorporate basic sociodemographic informa-

tion, such as the employment rate. For demographic information I use 2020 five-year

ACS.

4 Methodology

I propose a QSM to predict the effects of the new rail system on (1) average com-

mute duration, (2) public transit mode share, and (3) the aggregate employment rate.

I allow workers to choose their home location, work location, commute mode (driving

vs. transit), and labor market participation. The model is built on the assumptions of

the classic urban model. Workers are utility maximizing and face a trade-off between

housing costs and commuting costs. I introduce two types of workers: low and high-

income. Solving the model will yield preference parameters over routes and modes and

allow worker behavior to be estimated in counterfactual scenarios.

The introduction of rail reduces some commuting costs. By holding constant

worker preference parameters and resolving the model under alternative transit coun-

terfactuals, I am able to estimate the impact of rail on aggregate worker outcomes

inclusive of endogenous worker decision making.

Equation 1 is a Cobb-Douglas style utility function that governs worker preferences.

Uijkm = (C − cs(i)jkm)γs(i)H(1−γs(i))χs(i)J(j)K(k) + ξijkm (1)

Workers derive utility from numeraire consumption (C) and generic units of hous-

ing (H). Nonmonetary commuting costs (c) reduce consumption. Each worker (i)

chooses a home location (j), work location (k), and mode of transportation (m). Mode

choice is limited to driving or public transportation. Walking is considered as a com-

ponent of public transportation. The share of income a worker spends on housing is set

by 1− γs(i). Each worker is either a high (s(i) = h) or low (s(i) = l) income worker.

42021 five-year ACS data records median monthly housing costs for owner-occupiers on O'ahu to
be $2,800, closely matching the median calculated from the deed transfer records.
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χs(i)JK is a route and worker-type specific preference parameter. I define the home

census block as j, the home census tract as J(j), the work census block as k, and

the work census tract as K(k). Beyond differences in commuting costs (which are

accounted for directly), some routes may provide higher utility than others based on

their unique characteristics, such as housing and job prospects or any other route specific

characteristics. Given spatial differences in job types and housing quality, different

worker types may have different common preferences. All workers of the same type share

a common evaluation of χJK . Resolving χs(i)JK will help produce realistic substitution

patterns in the counterfactuals as workers of specific types will preferentially substitute

towards routes that provide higher utility to their type, on average. An extreme value

distributed error term (ξijkm) captures the worker specific idiosyncratic preferences over

each available route-mode option.

Nonmonetary commuting costs (cs(i)jkm) are defined in Equation 2. ζs(i)m is the

mode-specific cost of commuting per hour as a share of a worker’s wage. ζs(i)m is allowed

to differ across worker types, as they may have different preferences across modes. ωs(i)k

denotes hourly wage and τjkm represents the hours spent in commute.

cs(i)jkm = ζs(i)mωs(i)kτjkm (2)

Each worker operates under a budget constraint, represented by Equation 3. Worker

income (ws(i)k) is determined by the worker’s type and their work location. Workers

exhaust their income5 (ws(i)k) on housing costs (Hpj), numeraire consumption (C), and

monetary commuting costs (θjkm). Monetary commuting costs will be calculated ac-

cording to the mode selected and, in the case of driving, the distance of the commute.

Workers choose a utility maximizing quantity of housing and pay the market housing

costs in their home location (pj).

ws(i)k = Hpj + C + θjkm (3)

A worker choosing a null work location (k = ∅) represents being out of the labor

force. When out of the labor force, a worker pays no commuting costs and receives a

government allocated income (ι).

The utility function and budget constraint combine to produce an indirect utility

function, shown in Equation 4.

5Annual income and hourly wage (ωs(i)k) are related by assuming an eight-hour work day and 260
working days in a year: ws(i)k = ωs(i)k × 8× 260.
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Vijkm = (ws(i)k − cs(i)jkm − θjkm)γs(i)
γs(i)

1− γs(i)
pj

1−γs(i)
χs(i)J(j)K(k) + ξijkm

Vijkm ≡ vijkm + ξijkm

(4)

The extreme value distributed idiosynncratic error term enables a multinomial

logit probability function (Equation 5). The function determines the probability that a

worker selects a specific home, work, mode triple (Pijkm). Upper-bar notation indicates

the maximum value in the set.

Pijkm =
evijkm∑j

1

∑k
1

∑m
1 e

vijkm
(5)

I calculate the public transit mode share for high and low income workers by

summing all of the choice probabilities in which m is public transit (Equation 6). I will

refer to the true (observed) public transit mode shares as Ms(i) and the model generated

values as Ms(i).

Ms(i) =

j∑
1

k∑
1

Pijk(m=transit) (6)

5 Solution Method

My approach differs from much of the prior literature in three ways. First, I

have access to a census block-level matrix of commuting times, which allows for a

more granular analysis than has been possible previously. Second, I have both pre- and

post-treatment commute time matrices, allowing me to calculate realistic commute time

changes attributable to rail. Third, to accommodate granular data without succumbing

to the overfitting issues identified in Dingel and Tintelnot (2023), I propose a new

method that accommodates block-level worker choices while matching tract-to-tract

bilateral commuter flows.

I first solve the complete cross-sectional model using data from the pre-rail period.

I make use of cross-sectional variation in worker commuting behavior to recover pref-

erence parameters governing commute time costs and a vector of route by worker type

preference parameters. Assuming that worker utility is equalized across space and ob-

serving actual housing cost and commuting cost information allows for the recovery of
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route specific preference parameters that necessarily compensate for spatial differences

in utility implied by housing costs and transportation costs. I then use these parame-

ters to run four counterfactual scenarios, which capture conditions across various rail

and worker sorting conditions.

To estimate the model, I impose several exogenous parameters, shown in Table 3.

Annual income is set to $19,859 for low-income workers and $85,326 for high-income

workers. I recover these estimates from ACS microdata.6 I set the out of labor force

income to be $10,000.

Table 3: Exogenous Model Parameters

Symbol Value Description
ws(i)=l 19.859 Low-income worker income ($1,000)
ws(i)=h 85.623 High-income worker income ($1,000)
ι 10.000 Out of labor force income ($1,000)

γs(i)=l 0.53 Share of income spent on non-housing consumption (low-income)
γs(i)=h 0.85 Share of income spent on non-housing consumption (high-income)
Ms(i)=l 0.180 Initial public transit mode share, low-income workers
Ms(i)=h 0.085 Initial public transit mode share, high-income workers
ζm=driving 0.93 Commuting cost per unit time as share of wage, driving
θjk(m=transit) 0.96 Annual monetary cost of transit commuting ($1,000)
θjk(m=driving) 0.0589×djk Annual monetary cost of private vehicle commuting ($1,000),

d=distance in km
I impose these parameters on the model.

I assume an individual worker spends a constant fraction of income on housing

(1−γ). Using O'ahu specific census microdata from the 2020 five-year ACS, I calculate

the share of household income spent on gross rent or mortgage payments for workers

earning above and below the $40,000 income threshold that divides low and high-income

workers. ACS data indicates low-income workers spend 47% of income on housing

and high-income workers spend 15% of income on housing, on average.7 I use these

estimates to parameterize γ. To facilitate solving tract-level route flows, I initially set

housing costs (pj) exogenously and uniformly within tracts, according to the tract-level

estimates from transaction data, as described in Section 3.

I impose an estimate of the time cost of driving as a share of the wage rate. I select

the parameter estimated in Small et al. (2005), which examined commuting behavior

6I use individual wage earnings from the 2020 five-year ACS microdata for Honolulu County. I
drop workers with earnings of zero or less and take the mean value for workers in each income category
(low vs high). I find that the main results are not sensitive to moderate changes in income level
assumptions.

7Davis and Ortalo-Magné (2011) discuss and estimate this parameter for the US, finding that the
average worker spends 24% of their income on housing.
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in Los Angeles, finding drivers faced a time cost of driving equal to 93% of their wage

rate. The parameter for public transit commuting will be determined endogenously to

match the observed public transit commuting rates (Ms(i)).

I constrain the model to produce the public transit mode share observed in aggre-

gate data. I impose mode share restrictions that are specific to worker type. I identify

Ms(i) directly from ACS data as 18.0% for low-income workers and 8.5% for high-income

workers. I consider walking to be a component of public transit to avoid introducing

an additional mode choice. Notably, public transit mode share among the low-income

group is more than twice that of the high-income group. When solving the model,

the worker type specific time costs of public transit use (ζs(i)m=transit) are determined

endogenously and allow the model to generate the correct public transit mode shares

in the pre-rail scenario.

I impose monetary commuting costs (θjkv). For public transit users, I assume

workers pay for 12 monthly transit passes each year, which cost $960 in Honolulu

(θjk(v=transit) = 0.960). For those driving, I approximate monetary commute costs using

data from the American Automobile Association (AAA) (American Automobile As-

sociation, 2021). Assuming 260 working days in a year, AAA estimates of marginal

commuting costs for a “medium sedan” imply $58.87 in annual costs for every km of

daily commuting. For each route I use the driving distance estimated in the Travel

Time data. To arrive at route specific monetary costs, I multiply the two-way commute

distance by the per km cost of driving.8 I assume workers ignore the fixed costs of

car ownership when choosing a commuting mode, as the decision to own a car reflects

general mobility demand beyond commuting.

Workers implicitly make a labor force participation decision, as selecting a null

work location (k = ∅) represents not working. When calculating the worker shares

for k = ∅ “routes,” I use ACS data on the number of working age residents in each

census tract who are out of the labor force, and spread these workers uniformly across

the tract’s constituent blocks, as weighted by block population. I then scale up the

number of workers out of the labor force to precisely match the island-wide labor

force participation rate as recorded in the ACS data (66.4%). I assume worker non-

participation is equally likely across worker types.

The model is solved simultaneously but has a nested structure as illustrated in

Figure 6. Bilateral commuter flow counts for each worker type are matched for every

8Weighted by commuter frequency, I estimate the average worker’s marginal costs of commuting
by vehicle total $1,769 per year.
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tract-to-tract pair by adjusting route level preference parameters (χs(i)J(j)K(k)). Fur-

thermore, ζs(i)(m=transit) parameters for the time cost of transit commuting are adjusted

endogenously to ensure Ms(i) = Ms(i) for each s(i).

Figure 6: Nested Solution Method

Solving Tract-level Flows and Aggregate Transit Mode Share

- Solve route preference parameters (χ ↑↓) to match bilateral tract flows.
- Solve commute cost parameters (ζs(i)(m=transit) ↑↓) to match transit mode share.

Solving Block-level Population Distribution

-Solve block level housing costs (pj ↑↓) to match block-level resident populations.
-Solve block level wages (ws(i)k ↑↓) to match block-level worker populations.
-Population weighted average housing costs and wages within a tract must equal
exogenous tract level rents in initial equilibrium.

The solution method matches tract-level bilateral commuting flows and worker type transit mode
share, and also matches within tract population distribution at the block-level. All conditions are

solved simultaneously.

Solving for the route level shares requires that each tract is attracting the correct
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number of residents and the correct number of employed workers. The block-level hous-

ing costs (pj) adjust endogenously to allocate workers in proportion to the population

of each block. I restrict the housing cost values such that the average cost faced by a

worker within a tract is equal to the tract-level rent calculated from the transaction

data (
∑

(pj×populationj)∑
populationj

= pJ(j),∀J). Therefore, matching block-level populations does

not have a first order effect on bilateral tract-level route popularity. Similarly, I allow

within block wages to adjust so that each block attracts the correct number of workers.

I maintain average tract level low- and high-income wages to match the exogenously

imposed wage levels (ws(i)=l, ws(i)=h).

The model is solved through contraction mapping, with workers selecting a home

block, a work block, and a mode, to match tract-level commuter flows, transit mode

shares, and block-level populations. I define an equilibrium as the case where low- and

high-income worker flows precisely match the observed data, each block has the correct

number of residents and workers, worker-type transit mode shares are matched to the

data, and workers are in a Nash Equilibrium where they cannot improve their utility

by altering any of their home, work, or mode decisions.

The model is identified through matching the observed commuter flows of 94,010

populated tract-level route-by-worker type flows, by adjusting an equal number of en-

dogenous route-by-worker type preference parameters (χs(i)jk); matching the two ob-

served transit mode share values (Ms(i)) by adjusting a vector of two endogenous transit

time cost parameters (ζs(i)v=transit); matching the resident populations of 4,960 blocks

by adjusting an equal number of rent values (pj); and matching the worker populations

of 3,218 blocks by adjusting an equal number of wage values (ws(i)k).

When solving the model, I identify a unique equilibrium point. Bayer and Tim-

mins (2005) discussed establishing uniqueness specifically for spatial sorting models. A

related discussion is provided in Allen et al. (2020). When neighborhood preference is

partially determined by the characteristics of other members of the neighborhood (eg

preference for neighbor income or race), multiple equilibrium will naturally become a

problem. In the current model, I do not consider neighbor preference, which removes

concerns over the possible presence of multiple equilibrium.

Identification of parameters in the pre-rail period (Scenario 1) comes from cross-

sectional variation in worker choice. If two routes in the model provide the same

commute times, housing costs, and wages, the routes will be chosen with equal frequency

but for a difference in the preference parameter. To the extent workers in the data

prefer one route over the other, the shared idiosyncratic preference parameter is raised
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to capture any characteristics of the route that might explain its relative popularity.

An identifying assumption is that these preference parameters over routes remain fixed,

and what changes is the matrix of public transit commute times. A reduction in public

transit commute time makes a worker marginally more likely to prefer that route.

Pooling data across eight years and solving commute flows at the tract rather than

block-level helps overcome the issue of matrix sparseness and over-fitting identified in

Dingel and Tintelnot (2023).9 O'ahu contains 16 million unique block-to-block commute

routes. Using two worker types creates a set of 32 million potential routes. However,

93% of these routes contain zero commuters even after data is pooled. By using tract-

level route choices, I estimate the model on a set of 55,440 routes, with two worker

types, creating a set of 110,880 potential routes, where only 22% contain no commuters.

Among routes with observed workers, the average number of workers is 16, while the

median is 2.3.

After solving for a pre-rail equilibrium (Scenario 1), I estimate conditions under

counterfactual scenarios. The scenarios are summarized in Table 7. In Scenario 2, I

lock in preference parameters, housing costs, and wages and I adjust the matrix of

public transit commute times to reflect the opening of the initial nine rail stations. I

then recalculate worker commuting times under the improved public transit conditions,

holding worker behavior fixed. Subsequently, I allow workers to adjust home location,

work location, and mode choice and allow housing costs to adjust to clear the housing

market and solve for the new equilibrium under the new commute time matrix (Scenario

3). Offered wages are held constant, but I allow firms to endogenously shrink or grow

if they experience a change in labor supply from workers. I calculate solutions in

Scenarios 4 and 5 similarly; I apply the commute time matrix that reflects the full rail

line operating while holding worker behavior fixed at Scenario 3 levels. Scenario 5 solves

the model for a third time through contraction mapping, considering the effects of the

full rail system. Providing estimates across the five scenarios is meant to highlight

the role of endogenous worker choice, contrast these effects with those under static

worker assumptions, and to roughly correspond to the chronological progression of rail

construction and worker sorting.

9Dingel and Tintelnot (2023) use LODES data for New York City, and demonstrate a significant
reduction in estimation bias when pooling three years of data rather than using a single year. I pool
eight years of data.
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Figure 7: Estimation Scenarios

Scenario 1 · · · · · ·• Pre-rail.

Scenario 2 · · · · · ·• Phase 1 rail is completed. Worker choices are held
constant at Scenario 1 level.

Scenario 3 · · · · · ·• Phase 1 rail is completed. Endogenous worker choices.

Scenario 4 · · · · · ·• Phase 2 rail is completed. Worker choices are held
constant at Scenario 3 level.

Scenario 5 · · · · · ·• Phase 2 rail is completed. Endogenous worker choices.

A description of the scenarios estimated. The locations of Phase 1 and Phase 2 rail stations are
shown in Figure 1.

6 Results

I estimate the effect of the rail system on commute times, public transit mode

share, and the employment rate. I summarize the three outcomes across scenarios in

Figure 8.

Figure 8A shows the progression of public transit mode share. In the pre-rail

period, the model matches transit mode share to observed data, with 18.0% of low-

income workers using transit and 8.5% of high-income workers using transit. After

Phase 1 rail is completed (Scenario 2) and workers are allowed to reoptimize their

home, work, and mode-choice decisions (Scenario 3), I find that public transit mode

share increases to 18.3% for low-income workers and to 9.0% for high-income workers.

I find a larger effect for Phase 2 rail, which provides a rail option for a larger share of

commuting routes. After workers reoptimize according to Phase 2 rail (Scenario 5), I

find that low- and high-income worker transit mode shares rise to 19.3% and 10.7%,

respectively. Comparing Scenario 1 to Scenario 5, I find that the overall public transit

mode share rises from 13.2% to 15.0%–a 13% increase. The majority of the improvement

(75%) is due to Phase 2 rail. Phase 2 also attracts relatively more high-income workers

to public transit, as the Phase 2 stations serve more routes where high-income workers

hold a preference.

The Scenario 1 solution shows that the overall average one-way commute time for a

low-income worker is 22.9 minutes and that the average for a high-income worker is 19.8

minutes. The changes in commute times are summarized in Figure 8B. The introduction

of Phase 1 rail lowers average commute times, as workers who used transit along the
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Figure 8: Changes in Aggregate Outcomes

A. Public Transit Mode Share

B. Average Commute Time

C. Employment Rate

− All workers −−− High-income workers −−− Low-income workers

The graphs show the progression of rail’s effect on three outcomes. Scenario 1
corresponds to the pre-rail period, while Scenario 5 corresponds to the full rail
system with endogenous worker choices. Full scenario descriptions are provided in
Figure 7.

rail route benefit from shorter commuting times (Scenario 2). The majority of initial
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commute time benefits accrue to low-income workers, who are currently the primary

users of transit on O'ahu, particularly along the routes served by Phase 1 rail. After

the opening of Phase 1 rail, the island-wide average low-income commute time falls

to 22.8 minutes (a 0.5% reduction) while high-income average commute time remains

virtually unchanged (a 0.1% reduction). Once endogenous worker choices are allowed,

the average commuting time improvements are erased. The primary mechanism that

causes rail to increase commute times is that transit is a slower mode of transportation,

even after the improvements attributable to rail. The increase in public transit mode

share (Figure 8A) translates into a rise in average commute time. As a second-order

effect, lowering commuting costs presents workers with the opportunity to live farther

from their work location, which diminishes the time savings of rail. Additionally, the

allocation of rail represents a local amenity to the neighborhoods with rail stations,

pushing up local housing costs. Because the location decisions of low-income workers

are sensitive to rents, this causes some low-income workers to leave the rail areas for

locations with lower housing costs. Low housing cost areas tend to be more peripheral,

and often include longer commutes.

In Scenario 4, with the introduction of the full Phase 2 rail line, the commute

times for both low and high-income workers fall again. The relative effect on high-

income workers is larger in Phase 2 because the location of the new stations align more

closely with existing high-income commute flows. After I allow for full endogenous

sorting (Scenario 5), I find commute times rise again. In the final equilibrium, I find

that average commute time across all O'ahu workers increases by 1.4% (or 18 seconds)

compared to a scenario where rail was never built. Average commute time for low-

income workers falls by a negligible 2 seconds, while average commute time for high-

income workers increases by 38 seconds. The introduction of transit systems are often

meant to reduce commuting times. It is important to note that when endogenous worker

choices are considered, the improvement of public transit infrastructure can raise the

average commuting time across the labor market.

The results of this section ignore the possibility that the introduction of rail may

reduce driving times by reducing vehicle traffic. In Appendix A, I provide alternative

results where I assume driving times are reduced by 5% in the rail corridor. However,

I find that the 5% exogenous reduction eliminates 92% of public transit mode-shift

identified in the main specification due to induced demand for driving, which suggests

that significant reductions in drive times are unlikely to be sustained in equilibrium.

Figure 8C summarizes the aggregate employment effect of rail. High commuting
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costs are a disincentive to employment. The provision of rail allows a worker to access

more employment opportunities for a given amount of commuting costs. Depending

on worker idiosyncratic preferences across home location, work location, and mode,

the reduced commuting costs will push marginal workers into employment. Across all

workers, I find that the full Phase 2 rail system increases the employment rate by 0.4

percentage points–from 66.4% to 66.8%. The change implies that 2,300 workers gain

employment in response to the full rail system. The effect is similar among low- and

high-income workers. According to ACS data for O'ahu, aggregate annual income is

$39 billion, meaning the induced employment effect could generate roughly $254 million

in new annual income on O'ahu. Some of this income could be captured by the county

and state as tax revenue.

Figure 9 displays the block-level estimated changes in housing cost (pj) between

Scenario 1 and 5. I estimate significant increases in housing costs for blocks near the

new rail stations. The block experiencing the largest increase in housing costs sees an

increase of 5.6%, while the largest decrease experienced is 0.6%. The cost increases

near to stations are largely offset by rent decreases in neighborhoods far from stations,

which become comparatively less desirable. I also observe housing cost increases on

the far west side of O'ahu and in the central O'ahu neighborhood of Mililani. Both of

these neighborhoods have bus service that connects to the new rail system, meaning the

rail improves the accessibility from these neighborhoods through the transit network,

despite rail not connecting to these areas directly.

7 Conclusion

I estimate the effects of O'ahu’s rail system through a QSM. I show that modeling

endogenous worker decisions is key to estimating the aggregate effects of the system. By

directly modeling worker behavior I am able to provide realistic estimates of aggregate

rail impacts. While a common motivation for constructing transit improvements is to

reduce commute times, I find that the O'ahu system is likely to marginally increase

the average time spent commuting by a worker on O'ahu. However, this is due to

the system’s success in shifting a meaningful share of the workforce (1.8%) away from

private vehicle commuting to public transit commuting. Furthermore, the option of

reasonably fast and affordable public transit encourages some workers to enter the

labor force. I estimate the full rail system will increase O'ahu’s employment rate by 0.4

percentage points by alleviating spatial mismatch.
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Figure 9: Estimated Changes in Local Housing Costs

The map shows the predicted housing cost effects of the rail system at the block
level. Prices generally increase near rail stations and in places with bus access to
rail. Areas with no worker populations are shown in gray. Rail stations are shown
as black dots.

One limitation of the model is the assumption of a “closed city.” The creation of

a valuable public amenity is likely to make workers from outside of O'ahu marginally

more likely to move to O'ahu, which may fuel further rent increases around stations

and have other second-order effects. Modeling workers as independent agents is also

a limitation, as many workers are in dual-earner households and face a more complex

location optimization problem.

A complementary policy to rail on O'ahu has been an attempt to generate new

housing near rail stations through zoning changes that encourage Transit Oriented

Development. I do not model endogenous housing supply responses, and consider this
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process to be separate from the impacts of rail. Despite these limitations, I believe

the paper provides realistic estimates for the probable effects of rail. All of the paper’s

main results are driven by endogenous worker choices. This highlights the importance

of QSMs in evaluating urban transit projects.

This paper contributes to the literature on discrete neighborhood choice model-

ing, as well as studies on transportation infrastructure evaluation. I analyze a data

set with richer spatial variation than has been attempted in any prior related works.

Census block-level analysis allows for the model to capture extremely local impacts

of rail. Workers are rarely willing to walk significant distances to reach rail. Many

studies assume pedestrian catchment areas extend only about 0.5 miles from a station

(Guerra et al., 2012). Therefore, the use of larger geographic units will be unable to

accurately capture commuter behavior. I propose a method to overcome the issue of

commute matrix “sparseness,” as defined in Dingel and Tintelnot (2023). The combi-

nation of multiple worker types, explicit modeling of transportation costs, and a nested

approach to modeling route-level preference parameters and neighborhood choice pro-

vides a unique modeling approach that may be helpful for research in other settings.
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Appendix A

In the main specification I assume the rail line does not affect driving commute

times. Overall, the main model suggests rail would reduce the total number of car

commuters on O'ahu by 5,700, which is the net effect of a 0.4 percentage point increase

in the working population and a 1.8% increase in the public transit mode share. This

reduction would be concentrated around the rail lines, which could lead to fewer traf-

fic delays. In Figure A1, I provide results where I assume that vehicle travel times

that cross the rail corridor fall by 5% when rail is operating. Under this alternative

assumption I find that the full rail line increases public transit mode share by 1.2 per-

centage points, reduces average island-wide commute time by 8 seconds, and increases

the island-wide employment rate by 1.3 percentage points. Without the reduction in

drive times (Figure 8), the estimates were a 1.8 percentage point increase in public tran-

sit mode share, a 21 second increase in average commute time, and a 0.4 percentage

point increase in the employment rate.

A reduction in vehicle travel time makes driving marginally less costly, which

improves the overall commute time and labor market effects of rail, but reduces the

estimated gain in public transit mode share. However, under the 5% time reduction

scenario, the reduction in car commuters would be 460 rather than 5,700. The model

captures induced demand (Duranton and Turner, 2011), as workers shift into the labor

force, and shift towards driving, to take advantage of faster drive times. The model

predicts that 92% of the reduction in traffic would be undone by induced demand. The

model does not capture workers’ propensity to work more days, or substitute towards a

rush-hour commute, which would further contribute to induced demand. Therefore, the

model predicts that car traffic, and therefore drive times, would be nearly unchanged,

which is consistent with the main specification’s assumption of no change in drive times.
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A1: Changes in Aggregate Outcomes, Assuming 5% Drive Time Reduction in Rail Corridor

A. Public Transit Mode Share

B. Average Commute Time

C. Employment Rate

− All workers −−− High-income workers −−− Low-income workers

The graphs show the progression of rail’s effect on three outcomes. Scenario 1
corresponds to the pre-rail period while Scenario 5 corresponds to the full rail
system with endogenous worker choices. Full scenario descriptions are provided in
Figure 7.
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