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Abstract

A growing number of US public transit agencies have eliminated fares as a strategy
to boost ridership, expand mobility and achieve transportation equity goals. This
study identifies 14 US transit agencies that have recently eliminated fares. A
staggered difference-in-difference analysis shows that fare elimination increased
ridership by 55%, on average. I find no evidence that fare-free policies were
followed by service cuts. In fact, service level and total system investment tended
to increase after fares were removed. Lost fare revenue is typically replaced by
external funding sources. A synthetic control analysis estimates agency-specific
effects, revealing significant heterogeneity.
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of Hawai'i at Mānoa, Honolulu, HI, United States. jtyndall@hawaii.edu.



1 Introduction

Transit agencies periodically adjust fares, balancing fiscal pressures with accessi-

bility and mobility goals. While completely eliminating fares has been rare in the US,

a growing number of mid-sized systems have recently adopted fully fare-free policies.

These policies could have broad consequences for urban mobility and affordability. In

this paper, I document US transit agencies that have recently eliminated fares, iden-

tifying 14 systems. On average, ridership increased by 55% following fare elimination.

Agencies tended to expand service and investment despite the loss of revenue. I provide

new causal evidence on the effects of fare-free transit.

Eliminating bus fares has a number of attractive properties. First, it is a direct

financial benefit to incumbent riders. Bus riders in the US skew significantly lower-

income (Schouten et al., 2021), meaning these savings can lower the cost of living and

reduce economic inequality. Second, removing fares raises public mobility by incentiviz-

ing more trips to take place. Increased mobility expands the opportunities for beneficial

economic and social interactions in a city. Third, the elimination of transaction costs

can improve service quality. Completing a financial transaction for every person en-

tering a bus can take a significant amount of time, which increases vehicle dwell time,

potentially degrading service quality. Fare elimination can enable “all door boarding,”

where riders can enter buses at rear doors, rather than queuing at the front, reducing

dwell time. Fourth, fare elimination removes the financial costs of collecting fares. Fare

collection infrastructure is costly to maintain and agencies must pay workers to enforce

fare payment. Fifth, lowering transit costs might lead to a reduction in car trips, and

associated externalities, if travelers substitute between modes. Prior research provides

mixed evidence about the size of this substitution effect (Fearnley, 2013; Albalate et al.,

2024; Webster, 2024; Vieira et al., 2025).

The primary drawback of fare elimination is the loss of revenue for public transit

agencies. Providing high quality service is important to attracting ridership (Tyndall,

2018) and the loss of fare revenue could necessitate corresponding service cuts. How-

ever, fares typically comprise only a small share of agency revenue. In 2024, the average

US transit agency funded 13% of operating expenditures through fares (Federal Transit

Administration, 2025). Large agencies tend to raise relatively more from fares than

small agencies, pulling up the average. For the median agency the “farebox recovery

ratio” was only 6%. The large majority of transit funding comes from other sources

including local tax revenue or state and federal grants. Still, without replacing lost
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revenue, fare elimination could necessitate modest service cuts, which will be particu-

larly harmful to those most dependent on transit service. If agencies have the financial

ability to forego fares, arguably, that money might be of greater value to transit users

if invested in service improvements rather than fare elimination. The funding structure

and politics of public transportation provision suggests that the determinants of expen-

diture level are complex and the loss of fare revenue does not necessitate an equivalent

reduction in transit investment. Below, I empirically estimate changes in level of transit

service, operating expenditure and external funding that follow fare elimination.

Fare elimination schemes have not been widely studied in the literature because

they have not been widely adopted (Keblowski, 2019). European jurisdictions have

hosted some significant fare-free systems, but the academic literature is limited. Lux-

embourg and Malta have both adopted free transit nationally. The cities of Tallinn,

Estonia; Hasselt, Belgium; and Dunkirk, France have all had periods of fare-free tran-

sit. De Witte et al. (2006) broadly examines fare subsidies across Belgium, including

fare-free programs, finding a positive ridership response. A German program that of-

fered riders unlimited transit for a month for only 9 Euros was studied in Andor et al.

(2025) and Rozynek (2024). Both studies found the program induced large increases

in mobility, particularly for leisure activities. Fearnley (2013) summarized European

experiences with fare-free transit, finding large ridership increases but limited evidence

of reduced car use.

Tallinn, Estonia is perhaps the most well known instance of fare elimination.

Tallinn eliminated all public transit fares for local residents in 2013, though it main-

tained fares for non-residents, requiring the continuation of fare collection infrastruc-

ture. Cats et al. (2014) estimated only a 1.2% increase in ridership four months after

fares were eliminated, and Cats et al. (2017) subsequently estimated a 14% increase

after a year of fare-free service, finding larger mobility benefits for low-income resi-

dents. Due to the details of tax policy in Estonia, fare elimination actually led to a

net increase in municipal revenue. Estonians responded to the policy by strategically

declaring Tallinn residency to qualify for a free transit pass, which inflated the city’s

official population, raising federal remittance payments.1

US studies of fare-free transit are also scarce. One type of fare-free program that

has been widely adopted in the US is providing free transit to university students.

Brown et al. (2001, 2003) provided analysis of these programs, finding student ridership

1See Hess (2017) for a detailed summary of research on fare-free transit in Tallinn.
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increased dramatically when fares were eliminated, with estimates ranging from 71-

200% across systems. Results also suggested substitution away from vehicle trips, with

fare-free programs leading to reduced campus parking demand.

Ofosu-Kwabe et al. (2024) provides the only national analysis of free-fare programs

in the US, finding fare removal increased ridership in small markets by 34% and medium

sized markets by 28%. The study period included 2011-2021 and covers only seven US

systems that adopted fare-free transit during that period, with five of those adopting

free fares in 2020. Because almost all of the treatment variation is confined to 2020 and

2021, it is difficult to disentangle COVID-19 pandemic effects from the policy effect of

free fares. Notwithstanding the sample size limitation, the authors find a significantly

positive ridership effect. Estimates on labor force participation and local inequality

metrics returned null results.

Reduced transit vehicle dwell time is one possible advantage of removing fare pay-

ments. To my knowledge, there is no empirical academic literature that has documented

the effect. However, internal study by the Massachusetts Bay Transportation Author-

ity’s fare-free routes found dwell times fell by 6-23% across the routes that removed

fares (Massachusetts Bay Transportation Authority, 2023). Evaluation of the fare-free

program for the Merrimack Valley Regional Transit Authority (Massachusetts) found

dwell times were cut in half (Merrimack Valley Planning Commission, 2025).

Fare-free transit lowers commuting costs, which could increase participation in the

labor force (Sanchez et al., 2004; Stoll, 1999; Tyndall, 2017). Multiple papers have

reported results from randomized control trials (RCTs) where a subset of a population

was randomly allocated free or discounted transit passes and labor market outcomes

were tracked. Brough et al. (2022, 2025) provided results from an RCT in Seattle,

which randomly provided free transit passes to individuals enrolling for social services.

The study found a significant increase in transit use among recipients of free transit

passes, but found no significant labor market effects. In contrast, Mbonu & Chizeck

(2025) conducted an RCT in an unnamed US county and found free fares increased

trips by 43% and increased the likelihood that an initially unemployed worker found a

job. An RCT in Santiago, Chile randomly assigned two-week free transit passes to some

study participants and found a modest (12%) increase in transit use, with generated

trips concentrated during off-peak hours (Bull et al., 2021). The RCT results generally

align with European studies (e.g. Rozynek, 2024) that suggest fare elimination broadly

raises mobility, mainly through non-work trips.

The RCT studies provide causal evidence of ridership effects. However, they iden-
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tify individual-level effects, rather than the effects of system-wide fare elimination.

System-wide fare elimination may have different impacts because transit agencies may

endogenously adjust policy and service level in response to fare elimination. I directly

estimate changes to transit agency service and finances, which is not possible in RCT

designs and has not been estimated in the prior literature. Additionally, those who en-

roll in RCTs may be unrepresentative of the overall population. For example, Brough

et al. (2022, 2025) draw participants from those already applying for public benefits.

I contribute causal evidence from system-wide fare elimination programs in the US,

which allows me to study general ridership consequences, as well as agency responses.

The paper will proceed as follows. Section 2 discusses the rise of fare-free transit

in the US. Section 3 discusses data sources. Section 4 lays out the staggered difference-

in-difference and synthetic control methods adopted in this paper. Section 5 presents

results and Section 6 concludes.

2 The Expansion of Fare-free Transit in the US

The number of US transit systems operating fare-free has been growing. In 2019,

among mid-to-large-sized2 US transit agencies, only 16 operated without fares. By 2025,

that number had grown to 37–a 130% increase. Figure 1 displays the total number of

US transit agencies offering fully fare-free service over time. I provide a full list of

identified fare-free agencies in Appendix A.

Figure 1: Number of US Fare-Free Transit Systems Over Time

Active fare-free systems by year (2010-2025) for agencies with 2010 ridership above
500,000.

2I limit the analysis of this paper to agencies with 2010 ridership that exceeded 500,000.
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The COVID-19 pandemic, which triggered a steep decline in transit ridership across

the country, was a major catalyst for the shift towards fare-free models. Many agencies

responded to the pandemic by suspending fares, initially as a temporary measure. Some

of these agencies subsequently adopted fare-free service on a long-term or permanent

basis. This paper focuses on systems that sustained fare-free policies for multiple years.

The pandemic was a significant shock to ridership and transit systems in general.

Figure 2 shows annual transit trips across all US agencies. Ridership plummeted during

the pandemic, falling by 55% between 2019 and 2021. By 2024, it had begun to rebound

but remained 22% below pre-pandemic levels. Disentangling the effects of the pandemic

from those of fare elimination presents a significant empirical challenge, which I discuss

below.

Figure 2: Unlinked Passenger Trips for US Transit Agencies

Data includes all US transit agencies that reported information to the National
Transit Database in 2024.

Persistent low ridership may itself be a motivation for eliminating fares. Many US

transit systems are currently operating with excess capacity and collecting substantially

less fare revenue than in the past, making the case for a zero-fare model more compelling.

3 Data

The primary data source is the National Transit Database (NTD) Service Data

and Operating Expenses Time Series, provided by the Federal Transit Administration

(FTA). The NTD presents data collected from federally mandated reporting require-

ments that apply to all transit agencies receiving federal funding. The data covers

essentially all transit agencies in the country, with data coverage beginning in 1991.
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The most recent release included 2,175 transit agencies who reported ridership data for

2024.

The NTD provides annual estimates on ridership, service levels, and expenditures

by public transit agency. While data coverage has changed over time, I obtain consis-

tently reported data covering 2010-2024. I drop a number of observations from analysis.

First, I drop agencies that recorded fewer than 500,000 boardings in 2010. The NTD in-

cludes local systems operated by universities, corporate entities, or systems exclusively

for use by those with disabilities. Elimination of fares in such systems might have very

idiosyncratic consequences that are not generalizable. Additionally, fare information

for very small systems are not always publicly available, complicating the identification

of fare-free systems. By keeping only systems with ridership above 500,000 I am able

to make conclusions that are more broadly applicable to mid-sized transit agencies.

I identify 427 agencies with ridership of 500,000 or greater in 2010. I drop agencies

that have incomplete data, most commonly because they did not exist across the entire

2010-2024 study period. I also drop agencies that operated fare-free service, but the

elimination of fares happened outside of the study window. The exclusion allows me to

construct a control group exclusively from fare charging agencies. The final data set is

a 15-year balanced panel of 407 transit agencies.

Table 1 provides agency-by-year level summary statistics. There is a wide range

of agency characteristics. The NTD reports annual “Unlinked Passenger Trips” for

every transit system, which will serve as my primary measure of ridership. While jour-

neys that require connections between multiple transit vehicles will represent multiple

“unlinked” trips, many transit agencies do not have the capacity to track complete

passenger journeys, meaning unlinked trips are the best consistent measure of system

ridership. Agency-by-year ridership ranges in the final data set from only 2,400 trips

(some agencies dramatically reduced service during the pandemic) to 3.5 billion trips

(recorded by the New York City, Metropolitan Transportation Authority in 2014).

The NTD also records service levels. I adopt two measures of transit service level:

Vehicle Revenue Miles, which counts the combined miles traversed by all transit vehicles

while they provided service, and Vehicle Revenue Hours, which counts the total number

of hours transit vehicles were providing service, summed over all vehicles in the system.

Additionally, I make use of records on Total Operational Expenditures, which records

the annual operating budget of every agency in each year.

I also use the FTA’s Total Funding Timeseries dataset, which records all funding

sources allocated to each transit agency. I report the total annual funding directed

6



Table 1: Transit Agency Panel Summary Statistics

Mean SD Min Max
Fare-free (dummy) 0.01 0.11 0.00 1.00
Unlinked Passenger Trips (millions) 21.16 158.80 0.00 3,545.17
Vehicle Revenue Miles (millions) 9.15 29.39 0.01 510.26
Vehicle Revenue Hours (thousands) 618.00 2116.00 1.00 37,351.00
Total Operational Expenditures (millions $) 108.36 478.55 0.73 10,685.05
Funding - Total (millions $) 166.72 734.51 0.73 16,758.70
Funding - Federal (millions $) 35.81 160.65 0.00 5,947.43
Funding - State (millions $) 36.90 211.00 0.00 6,110.28
Funding - Local (millions $) 53.44 188.44 0.00 3,132.53
Funding - Other (millions $) 40.57 289.15 0.00 7,208.31
Trips per Vehicle Revenue Mile 1.49 2.57 0.00 78.12
State COVID Deaths (per million pop.) 160.48 433.82 0.00 2,195.44
Year 2017 4.32 2010 2024
Observations 6,105

The level of observation is transit agency-by-year. I include only agencies with
2010 ridership exceeding 500,000. The data covers 407 agencies from 2010-2024.

to each agency, as well as identify funding separately from Federal, State, and Local

government sources, and funding from “Other” sources, which includes fare revenues.

While local funding comprises the largest source, the four categories each contribute

similar funding levels (Table 1). Total annual funding levels have a wide range, from

$730,000 to $16.8 billion.

I manually construct a data set of fare-free transit systems. The recently pub-

lished Fare-Free Transit Evaluation Framework by the National Academy of Sciences

provides a useful list of fare-free systems (National Academies of Sciences et al., 2023),

but I expand this through web searches, agency policy documents and news articles.

I identify 14 US agencies that had 2010 ridership exceeding 500,000 and eliminated

fares in years between 2010 and 2024, which will comprise the treated agencies in the

empirical analysis.3 Of these 14 agencies, nine eliminated fares in 2020, two eliminated

fares earlier, and three eliminated fares later. I also manually collect information on the

standard bus fare that was in effect before fare removal for the 14 systems. Standard

3Many agencies eliminated fares for brief periods in 2020 as a response to the COVID-19 pandemic.
See Keblowski et al. (2023) for a detailed inventory of fare-free adoptions in the US during the pan-
demic. The 14 agencies I identify operated fare-free for multiple years. I do not include temporary
pandemic response fare-free programs as a part of my treated sample. I discuss the potential for
treatment contamination bias in 2020 when interpreting results.
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fares ranged from $0.75 to $2.00. Table 2 lists the 14 fare-free agencies I identified.

Table 2: US Transit Agencies that Eliminated Fares, 2011-2023

Agency State Ridership Fare-Free Pre-Free
(2010) Start Fare

Sun Tran (Tucson) AZ 20,847,575 2020 $1.50
RideKC (Kansas City) MO/KS 15,121,683 2020 $1.50
Greater Richmond Transit Co. VA 14,185,511 2020 $1.50
Intercity Transit (Thurston County) WA 5,101,082 2020 $1.25
GoDurham (Durham) NC 5,059,368 2020 $1.00
DASH (Alexandria Transit Co.) VA 4,352,852 2021 $2.00
Worcester RTA (WRTA) MA 3,493,141 2020 $2.00
Merrimack Valley RTA (MeVa) MA 2,132,657 2022 $1.25
Transfort (Fort Collins) CO 2,074,580 2020 $1.25
Hele-On (Hawai'i County) HI 1,301,603 2022 $2.00
Link Transit (Chelan-Douglas PTBA) WA 1,029,155 2020 $1.00
CUE Bus (Fairfax) VA 929,897 2020 $1.75
Mountain Line (Missoula UTD) MT 812,955 2015 $1.00
Corvallis Transit System OR 700,820 2011 $0.75

The 14 mid-sized agencies that adopted fare-free transit within the study period.

Agencies adopting fare-free transit are spread out across the US. Figure 3 maps

the location of the 14 treated agencies, as well as fare-free agencies who initiated fare-

free policies outside of the study period. Three treated agencies are located in Virginia,

while Massachusetts and Washington each contain two. Six additional fare-free systems

operate in Washington State, but they are either too small to be included in the analysis

or had policy start dates outside of the study period.

While none of the nation’s largest transit systems have removed fares, fare-free

agencies represent a range of ridership levels. Figure 4 charts ridership across all systems

in the sample, indicating those systems that removed fares in the study period with

a red arrow. I show the ridership distribution for 2010, 2020 (the year many systems

removed fares), and 2024 (the most recent year available). The largest system to remove

fares was Sun Tran in Tuscon, AZ, recording 21 million trips in 2010, which is in the

87th percentile of the study sample.

Prior literature has suggested that fare-free transit might be more suitable for tran-

sit systems experiencing low service utilization (National Academies of Sciences et al.,

2023). I construct a measure of utilization by dividing trips by vehicle revenue miles.
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Figure 3: Location of Fare-Free Systems

• Treated fare-free system ◦ Other fare-free system

Fare-free systems operating in the US in 2024. Treated systems are limited to
those with 2010 ridership of at least 500,000 and that eliminated fares during the
study period. The full list of fare-free systems is provided in Appendix Table A1.
County boundaries are shown.

The metric represents the number of transit boardings per mile of vehicle operation.

The metric averages 1.49. Figure 5 shows the distribution of system utilization across

all systems in the sample, highlighting the utilization among systems that removed

fares. I do not find any clear relationship between system utilization and the proba-

bility an agency removed fares. Utilization of transit fell sharply during the pandemic,

and in 2024 remained below pre-pandemic levels.

In my regression analysis I control for the potentially heterogeneous influence of

COVID-19 across agencies. A correlation between the local severity of the pandemic and

the probability of removing fares could be a threat to identification because pandemic

severity will also impact ridership. While I cannot observe COVID-19 rates at the
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Figure 4: Unlinked Passenger Trips of Sample, Log Scaled

↓ : Fare-free (treated) Agency

Unlinked passenger trips is equal to the number of transit vehicle boardings in a
year. I include only agencies with ridership of at least 500,000 in 2010. Trips are
logged in the figure. Red arrows indicate the 14 agencies that adopted fare-free
transit during the study period. N = 407.

transit agency level, I make use of state level data on COVID-19 deaths from the

US Center for Disease Control. I use state populations from the 2020 US Census to

estimate annual COVID-19 death rates, and assign a rate to each agency based on its

primary state of operation. COVID-19 death rates are available for 2020-2023, while

years outside of this range are assigned a value of zero.

4 Methodology

I adopt two complementary methodologies. I first estimate the average treatment

effect on the treated agencies of eliminating fares by estimating a staggered difference-in-
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Figure 5: Utilization, Trips per Vehicle Revenue Mile

↓ : Fare-free (treated) Agency

Utilization is measured as the number of unlinked passenger trips per total miles
of transit service provided in a year. I include only agencies with ridership of at
least 500,000 in 2010. Red arrows indicate the 14 agencies that adopted fare-free
transit during the study period. N = 407.

difference model. Second, to investigate heterogeneity across treated systems, I generate

synthetic control method estimates for each agency individually. I test for effects on

ridership, service level, agency expenditures, and agency revenue.

Equation 1 outlines the staggered difference-in-difference estimation strategy.

log(Yit) = β0 + β1Fit + Ωi + Φt +Xit
′θ + εit (1)

Y is the outcome variable, such as unlinked passenger trips for transit agency i in

year t. F is a dummy variable that takes a value of one if the agency offers free fares

in that year. Ω is an agency fixed effect and Φ is a year fixed effect. X is a vector
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of agency by year control variables, including the COVID-19 death rate in agency i’s

home state. I interpret β1 as the effect of eliminating fares on the outcome variable.

I estimate standard errors clustered at the transit agency level, which is the level of

treatment.

Prior research has demonstrated that estimation of causal effects in difference-

in-difference setups with staggered treatment requires an adjustment to the estima-

tor (Goodman-Bacon, 2021; Callaway & Sant’Anna, 2021). I adopt the staggered

difference-in-difference estimator proposed in Callaway & Sant’Anna (2021), which is

not subject to the bias identified in Goodman-Bacon (2021).

The staggered difference-in-difference approach aims to provide a causal inter-

pretation of the policy’s effect on agency outcomes by controlling for agency specific

characteristics and national year-to-year changes, while also establishing consistent pre-

trends between treated and control observations. In addition to estimating the average

treatment effect, I am also interested in the possibility that the policy impacts vary

across post-treatment years. I provide results from an event study model, which re-

lies on the same Callaway & Sant’Anna (2021) estimation method. The event study

analysis provides evidence for the underlying parallel trend assumption, which assumes

treated agencies had similar trends in outcomes prior to fare elimination and would

have continued on similar trends if not for the policy change.

Establishing a parallel trend between treated and control observations allows for

a causal interpretation of the estimated effect. Simply comparing ridership before and

after fare-free adoption, which is a typical approach for transit agency internal evalu-

ations, could provide misleading results. In particular, the impact of the COVID-19

pandemic on ridership generates significant annual changes across the study period.

Failing to control for time-specific national levels of ridership would bias results. For

the 14 systems I study, comparing ridership the year before fare elimination to rider-

ship one year following free-fare adoptions shows that the average system saw a 27%

decrease in ridership. However, this estimate is significantly impacted by the contami-

nating effect of the pandemic.

To identify agency specific effects, I subsequently estimate a synthetic control

model, which I apply to each of the 14 systems being studied. I use a standard synthetic

control method setup following the applications in Abadie et al. (2010) and Abadie &

Gardeazabal (2003) and use the algorithm provided in Abadie et al. (2011). For each

treated agency, I construct a donor pool consisting of non-treated agencies whose 2010

ridership was within 50% to 150% of the treated agency’s 2010 ridership. I estimate syn-
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thetic control weights based on each pre-treatment year’s ridership level. The method

has two benefits, (1) synthetic control weights allow for a better pre-treatment match

for the treated agency, which can be confirmed graphically. Comparing treated agencies

to other agencies that were on very similar ridership trajectories provides a plausible

identification strategy, and (2) the method produces agency specific estimates that cap-

ture treatment effect heterogeneity across agencies. I use these agency specific estimates

to present correlations between realized ridership effects and plausible predictors of the

efficacy of fare elimination. I test whether initial system size, initial system utiliza-

tion rate, initial fare level, and concurrent service cuts or expansions explain differing

ridership effects.

An additional estimation method that is well suited for policy evaluation in cases of

small treatment populations is the Synthetic Difference-in-Difference approach outlined

in Arkhangelsky et al. (2021). The method combines a difference-in-difference setup

with control group weighting to improve pretrend matching. However, the method is

not well suited for staggered treatment settings, meaning it can only be applied to the

set of agencies with a common treatment year. As a robustness check, I provide results

from this estimating methodology in Appendix B.

By providing results from multiple estimation strategies I am able to provide robust

evidence for the estimated effects. I find estimates are in strong agreement across the

approaches.

5 Results

I first present results from the staggered difference-in-difference design to estimate

the effect of free bus service on ridership, service level and agency finances. Acknowl-

edging that the effect of free service may have significant heterogeneity across systems,

I then present synthetic control method results for all 14 systems separately. I subse-

quently compare agency characteristics to ridership changes across the systems, iden-

tifying predictors for which types of systems experienced high or low ridership changes

from fare removal.

5.1 Staggered Difference-in-difference Results

Table 3 presents the main results of the Equation 1 staggered difference-in-difference

specification. Column 1 shows the estimated change in unlinked passenger trips for
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agencies adopting fare-free transit. I estimate that fare elimination caused a 46% in-

crease in trips for the average treated system. The effect is highly statistically signifi-

cant. Plausibly, the impact of ridership changes associate with the COVID-19 pandemic

could confound results. Column 2, includes a control variable for the COVID-19 death

rate at the state-year level. Including this control variable has no effect on the estimated

result. Removal of fares could necessitate a change in service level, which in turn affects

ridership. In column 3, I control for service level with separate covariates for vehicle

revenue miles, vehicle revenue hours, and agency operating expenditure. The estimate

increases slightly, to 47%. The stability of the estimate suggests the estimated effect

reflects a causal effect of fare elimination and is not due to endogenous local COVID-19

prevalence or endogenous changes in the agency’s level of service.

Table 3: Impact of Free Transit on Ridership and Service Level

Unlinked Unlinked Unlinked Vehicle Vehicle Operating
Trips Trips Trips Revenue Revenue Expenditure

Miles Hours
(1) (2) (3) (4) (5) (6)

Fare-free System 0.380** 0.380** 0.387** 0.100* 0.117** 0.092*
(0.074) (0.074) (0.073) (0.039) (0.034) (0.041)

Year fixed effect Yes Yes Yes Yes Yes Yes
Agency fixed effect Yes Yes Yes Yes Yes Yes
State COVID control No Yes Yes Yes Yes Yes
Service level controls No No Yes No No No

N = 6,105. Robust standard errors clustered at the agency level are shown in
parentheses. ** p<0.01, * p<0.05.

The staggered difference-in-difference methodology can also be adapted to an event

study. Figure 6 provides event study results. Year zero represents the year fare-free

service was introduced and is therefore partially treated. I find no effect on ridership in

year zero.4 In post-treatment years one, two, three and four, I find ridership is increased

by 44%, 44%, 47% and 55% respectively. I only observe two agencies with more than

four post-treatment years, so I am not able to reliably estimate longer term outcomes.

The result shows that the elimination of fares generates a large ridership effect during

the first full year of fare-free service, with weak evidence that the effect grows over time.

4As the majority of treated agencies removed fares in 2020, Year 0 as well as Year 1 estimates
could be contaminated by instances where control agencies introduced short-term fare elimination
programs as a COVID response. The stability of estimates in latter treatment years suggests this is
not a significant source of bias.
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I take 55% to be the long-run impact of fare elimination on ridership.

Figure 6: Staggered Difference-in-difference Event Study Results

A. Unlinked Passenger Trips

B. Vehicle Revenue Miles

C. Vehicle Revenue Hours

D. Total Operating Expenditure

Results of the staggered difference-in-difference estimation are displayed as event
study figures. I control for COVID-19 death rate at the state-year level in all
panels. Year 0 is partially treated, with fare elimination occurring at some point
during that year, while later years are fully treated. 95% confidence intervals are
shown.
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The estimates rely on a larger sample of fare-free agencies and cover a longer post-

treatment time period than prior studies in the literature. The estimated ridership effect

is nearly double the effect estimated in Ofosu-Kwabe et al. (2024), who estimated a

28% ridership increase in medium sized US markets and 34% in smaller markets. The

estimates are significantly larger than those evaluating fare elimination in Tallinn (Cats

et al., 2014, 2017).

I use the same difference-in-difference methodology to evaluate the impact of fare

elimination on level of transit service. Table 3 columns 4-6 present level of service

results. Column 4 estimates the effect on vehicle revenue miles. I estimate a significant

10.5% increase in vehicle revenue miles after fare elimination. For vehicle revenue hours I

estimate a statistically significant 12.4% increase (column 5). In column 6, I estimate an

effect on the annual operating expenses of the transit agency and find fare-free adoption

is associated with a significant 9.7% expenditure increase. Overall, I find evidence that

the agencies that removed fares simultaneously underwent service expansion, relative to

control agencies. The result is potentially counter-intuitive as these agencies lost fare

revenue but were still able to expand expenditures. The result suggests that agencies

were able to more than compensate for the revenue loss by exploiting other sources of

funds. I provide evidence for this funding mechanism below.

Event study results for service level and expenditures are provided in Figure 6

panels B-D. Together, these results suggest that fare elimination is associated with

higher service and higher spending on transit. Four years after fare elimination, all

three metrics of service level are statistically significantly higher in treated agencies than

control agencies. Unlike the ridership estimates, which represent a demand response,

effects on service level are likely endogenous to the decision to eliminate fares. Agencies

who eliminate fares are likely interested in expanding public transit use and may be

raising service levels as part of a long term expansion plan that includes fare elimination.

While some past research has argued that fare elimination will result in service cuts

due to deteriorating agency budgets (Storchmann, 2003), this phenomenon does not

appear in the data. However, I am only able to estimate service level effects up to four

years after fare-free adoption. Conceivably, lost revenue from removing fares could lead

to service cuts over longer time horizons, but there is no empirical evidence for this in

the US context.

I find the loss of fare revenue is not accompanied by a decline in expenditure,

suggesting agencies recoup lost revenue by tapping alternative sources. Table 4 esti-

mates the staggered difference-in-difference model on total annual funding secured by

16



the agency (Column 1), as well as separate estimates for Federal, State, Local, and

Other funding categories (Columns 2-5), and funding devoted separately for Operating

and Capital expenses (Columns 6-7). I estimate fare elimination leads to a positive

5.0% increase in overall funding, but the result is not statistically significant. Funding

allocations can be volatile across years as government grants commence and expire over

time, which adds an additional layer of noise to data that was already relying on a small

treatment sample. Therefore, estimates of fare elimination on annual funding amounts

tend to have large standard errors. I find positive effects on Federal and State funding,

but the results are also statistically insignificant. I do find a significant and positive

impact on local funding. I estimate local funding allocations to the transit agency rose

by 56% for the average treated agency after fare elimination (column 4). I find a large

and significant 77% drop in “Other” funding sources. “Other” funding is primarily

composed of fare revenue, which explains the large decline. However, “Other” also in-

cludes revenues generated from such sources as advertising contracts, concession sales,

park-and-ride facility charges or any other revenue sources the transit agency collects

directly.

Table 4: Impact of Free Transit on Log of Agency Funding

Total Federal State Local Other Operating Capital
(1) (2) (3) (4) (5) (6) (7)

Fare-free System 0.049 0.301 0.767 0.447* -1.448* 0.084* 0.063
(0.072) (0.482) (0.722) (0.185) (0.574) (0.036) (0.602 )

Year fixed effect Yes Yes Yes Yes Yes Yes Yes
Agency fixed effect Yes Yes Yes Yes Yes Yes Yes
State COVID control Yes Yes Yes Yes Yes Yes Yes

N = 6,105. Robust standard errors clustered at the agency level are shown in parentheses.
** p<0.01, * p<0.05.

Large standard errors prevent providing a clear story about which level of govern-

ment is typically responsible for compensating the agency for lost fare revenue. While

the increase in local funding is the only statistically significant result, the point estimate

for state funding implies that state funding more than doubles, on average. Overall, the

results suggest the average agency is able to expand government transfers when elimi-

nating fares, though experiences differ considerably across agencies as to what source

of external funding is tapped.

Table 4 columns 6-7 breaks out funding received by money devoted to operating

versus than capital expenditures. I find that funding devoted to operating expenses
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increased by a significant 8.7%, while I find a positive but statistically insignificant

effect on capital project funding. An increase in operating expenses is consistent with

service expansion after fare elimination. I find no evidence that agencies shift funding

away from capital investments to cover expanded service.

5.2 Synthetic Control Method Results

The previous section establishes that fare elimination leads to large ridership gains

and a significant increase in an agency’s level of service, on average. I now apply a

synthetic control method to yield agency specific estimates. Some prior research on

fare-free systems suggests benefits are strongest for small systems (Ofosu-Kwabe et al.,

2024) or systems with low initial utilization (Fearnley, 2013). Estimating agency specific

effects allows me to compare these to agency characteristics.

Figure 7 displays estimates of ridership changes from fare elimination for all 14

systems based on the synthetic control method.5 For 13 of 14 systems, I estimate an

increase in ridership. I find the average system experienced 60% growth in ridership

due to fare elimination, with the median estimated as 68%. These estimates are slightly

larger but consistent with the 55% increase estimated under the staggered difference-

in-difference model. Estimates range from -24.2% (Transfort, Fort Collins, CO) to

+122.8% (Hele-On, Hawai'i County, HI). A negative ridership effect is consistent with

capturing the impact of concurrent service cuts due to fare elimination. The synthetic

control method does not control for confounding variables that happened simultaneously

with fare elimination, so changes that are unique to an adopting agency at the time fares

were eliminated will affect results. In particular, reducing level of service concurrently

with fare elimination could show up as a negative ridership effect if the impacts of

service cuts are larger than the impacts of eliminating fares.

In addition to estimating ridership effects, I use the synthetic control method

to estimate level of service effects of fare elimination for all 14 systems. Figure 8

provides the estimated change in vehicle revenue miles attributable to fare elimination.

I estimate vehicle revenue miles increased in eight of 14 systems. However, agencies

5I adjust the method in two instances. The Hele-On system in Hawai'i County had two discrete
periods of fare-free service, spanning 2005-2011 and 2022-2025. When generating donor pool weights
for Hele-On, I omit 2010 and 2011 and only identify the effect of the second period of fare-free service.
The Corvallis Transit System began operating fare-free in 2011. The study period of 2010-2024 would
only allow for a single pre-treatment year. I therefore extend the pre-treatment period for the Corvallis
Transit System to 2009 to allow matching of pre-treatment trends. All fare-free periods are highlighted
in Figure 7.
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Figure 7: Synthetic Control Results, Annual Unlinked Passenger Trips

(a) DASH, Alexandria, VA (b) Intercity Transit, Thurston County, WA

(c) Link Transit, Chelan County, WA (d) Merrimack Valley Regional Transit Authority, MA

(e) Greater Richmond Transit Company, VA (f) CUE Bus, Fairfax, VA

(g) Hele-On, Hawai'i County, HI (h) GoDurham, Durham, NC

(i) RideKC, Kansas City, MO (j) Mountain Line, Missoula, MT

(k) Transfort, Fort Collins, CO (l) Sun Tran, Tuscon, AZ

(m) Corvallis Transit System, OR (n) Worcester Regional Transit Authority, MA

Each panel represents a separate synthetic control method result. Control group weights
are generated to match pre-treatment ridership level and trends.
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that did increase service tended to increase it substantially. Across all agencies, the

average change was a 14.7% increase in vehicle revenue miles. For the two agencies

with at least nine years of post-treatment data I can estimate longer run effects. After

nine years of free-fares, I estimate the Mountain Line (Missoula, MT) had a level of

service 74% higher than control group agencies. However, after 13 years, the Corvallis

Transit System (Oregon) had a level of service that was roughly the same as control

agencies. These different experiences highlight the idiosyncrasy in how service level

relates to fare elimination. Across the 14 systems, estimated changes in service level

ranged from -18.9% (Transfort, Fort Collins, CO) to +84.0% (Hele-On, Hawai'i County,
HI). Figure 8 indicates that many agencies maintained roughly the level of service that

would have been expected had they not eliminated fares, while there are some instances

of significant expansion. While different agencies had different responses, there is no

evidence of systematic service cuts in response to fare elimination, at least during the

limited post-treatment period.

The overall results are consistent between the staggered difference-in-difference and

synthetic control methods. In Appendix B, I provide additional results for ridership

and service level changes from a Synthetic Difference-in-difference design (Arkhangelsky

et al., 2021). The results are consistent.

Fare elimination likely has different ridership effects based on the initial conditions

of the agency. Figure 9 displays the correlation between each agency’s estimated rider-

ship change due to fare elimination (as estimated by the system’s final period presented

in Figure 7) and various agency characteristics. Panel A explores the relationship be-

tween agency size, measured by 2010 ridership, and the magnitude of the fare policy’s

impact. I find that smaller agencies tended to experience larger ridership gains, con-

sistent with Ofosu-Kwabe et al. (2024); however, the relationship is not statistically

significant. Panel B examines 2010 system utilization as a proxy for excess capacity.

It is plausible that agencies operating below capacity could more easily accommodate

new riders and capture larger ridership gains. However, I find no statistically significant

association between pre-treatment utilization and the ridership impact of fare elimina-

tion. Panel C considers the effect of pre-treatment fare levels, which ranged from $0.75
to $2.00 (see Table 2). Removing fares might have a larger impact for systems that

had high fares to begin with. The results suggest that a $1.00 increase in pre-treatment

fares is associated with a 28 percentage point larger increase in ridership. However, due

to the small sample size, this effect is also statistically insignificant.

Finally, Panel D investigates the relationship between service level changes and
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Figure 8: Synthetic Control Results, Vehicle Revenue Miles

(a) DASH, Alexandria, VA (b) Intercity Transit, Thurston County, WA

(c) Link Transit, Chelan County, WA (d) Merrimack Valley Regional Transit Authority, MA

(e) Greater Richmond Transit Company, VA (f) CUE Bus, Fairfax, VA

(g) Hele-On, Hawai'i County, HI (h) GoDurham, Durham, NC

(i) RideKC, Kansas City, MO (j) Mountain Line, Missoula, MT

(k) Transfort, Fort Collins, CO (l) Sun Tran, Tuscon, AZ

(m) Corvallis Transit System, OR (n) Worcester Regional Transit Authority, MA

Each panel represents a separate synthetic control method result. Control group weights
are generated to match pre-treatment vehicle revenue mile levels and trends.
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Figure 9: Correlation of Ridership Change and System Characteristics

A. Pre-treatment Ridership
B. Pre-treatment System

Utilization

C. Pre-treatment Fares D. Change in Service Level

Each panel displays the correlation between the percent change in unlinked pas-
senger trips attributable to fare elimination as calculated by the synthetic control
method, compared to possible predictors of the efficacy of fare removal. Ordinary
Least Squares lines of best fit are shown with bivariate regression coefficients.
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the effect of fare removal. Service level is proxied by the percent change in vehicle

revenue miles between the year before fare elimination and the final year of observation.

Here, I find significant evidence that agencies reducing service at the same time as

implementing fare-free policies saw smaller ridership gains. Specifically, a 10% cut in

service is associated with a statistically significant 6.1 percentage point reduction in the

ridership increase attributable to fare elimination. The agency that expanded service

the most (Hele-On, Hawai'i County, HI) also experienced the largest post-treatment

ridership gains. Whereas the five agencies that cut service all experienced among the

smallest ridership gains.

The only system where fare elimination appeared to reduce ridership (Transfort,

Fort Collins, CO) simultaneously cut service by 13%. Transfort also had charged only

$1 fares prior to fare elimination, which made the policy change less impactful. While

the analysis reveals that maintaining service level is important to realizing ridership

gains from fare elimination, I find no evidence, across methodologies, that fare removal

is typically followed by reductions in service.

In the staggered difference-in-difference analysis I estimate fare elimination trig-

gers a ridership increase of 47%, when averaged across post-treatment years (Table 3).

The estimate is conditional on changing service level. Changes to service level were

small and varied enough that controlling for service level did not significantly affect the

main estimate. However, zooming in on individual agencies reveals that the ridership

gain realized by an agency partially depends on the agency’s choice in maintaining or

expanding level of service.

5.3 Limitations

The analysis of this paper has some limitations. While fare-free programs have

expanded in the US, there are still relatively few examples to be studied. I provide

the most expansive evaluation of system-wide fare-free transit programs in the US.

However, my sample includes only 14 adopting systems, which limits statistical power

in the analysis. While these 14 instances cover a wide range in terms of system size,

utilization, and geographic locations, the experiences of systems that are, for example,

significantly smaller or larger may differ when removing fares. Because fare-free policies

have been adopted recently, I am only able to estimate effects up to four years post-

treatment. I address a significant policy concern with fare-free programs: that the lost

revenue may lead to reductions in service. While I don’t find any evidence of service
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reductions in the first four years, there is limited data to estimate longer run effects.

Finally, I am unable to observe the characteristics of induced trips. While these trips

must each have a positive welfare effect on the rider (their revealed preference is that

the trip was beneficial) these trips are also likely to be of a lower welfare benefit than

trips taken under a system with fares (their revealed preference was to not take these

trips when fares were in effect). Past research suggests free transit trips may have high

social value but limited labor market impacts (Rozynek, 2024; Brough et al., 2025). A

deeper understanding of the characteristics of trips induced by fare elimination in the

US context would be an important topic for further research.

6 Conclusion

In economic terms, transit fares are a user fee. While user fees generate revenue,

they also suppress demand. Theoretically, removing fares should increase ridership

while triggering lower revenue, expenditure and service quality. However, the empirical

evidence differs. Ridership increases are clear–the average agency expanded ridership

by 56%. However, service and expenditure both tended to increase after fares were

removed. I find service level and overall expenditure increased by roughly 10%, on

average, after fares were removed.

The fiscal shock of fare elimination to the transit agency appears to be small. One

explanation is that fares were a relatively small fraction of agency revenue to begin

with. For treated agencies, farebox collections averaged 17% of operating budgets at

the start of the study period. The percentage overstates the importance of fares, as

some of that revenue must be devoted to funding fare collection itself. For example, an

internal evaluation by one treated agency estimated that 27% of its 2019 fare revenue

was consumed by the costs of collecting fares (Merrimack Valley Planning Commission,

2025).

Eliminating transit fares has the potential to substantially reshape urban mobility

and improve equity outcomes. Funding transit through general taxation would bring it

in line with other public services, such as libraries, public schools, and roadways, that

are typically free at the point of use. In each of these domains, charging a user fee

would raise revenue but suppress demand, particularly among low-income populations.

Libraries, for instance, operate without fees because imposing fees would likely be seen

as unjust and inequitable. The choice to charge fares for a ride on a bus but not for

a book at a library does not reflect a fundamental economic distinction: both services
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involve high fixed costs and low marginal costs. Instead, the decision to impose user

fees represents a policy trade-off between the equity and welfare benefits of broad public

access and the goal of generating revenue.

Historically, public transit in the US was operated by private, profit-seeking firms

that charged fares to recoup capital investments. When public agencies began taking

over transit service provision in the latter half of the 20th century they retained the

fare model. Public acceptance of transit fares may therefore stem more from historical

precedent than economic necessity.

Fare-free transit remains a relatively new policy in the US, but it is expanding.

Beyond the agencies studied above, additional agencies have recently enacted local ordi-

nances to initiate fare-free service. Notable examples include the City of Albuquerque,

which removed fares in 2024, and Montgomery County, Maryland, where the Ride On

system eliminated fares in 2025. New fare-free programs offer valuable opportunities for

continued policy research, with the potential to deepen our understanding of fare-free

transit’s impacts on mobility, equity, and broader societal outcomes.
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A Fare-free Systems

Through searches of public reports and documents I identify 37 transit systems
in the US that are operating fare-free as of 2025. Table A1 lists the identified system
with 2024 ridership (unlinked passenger trips) and the year fares were removed from
the system. The empirical analysis of this paper examines systems that removed fares
after 2010 but before 2024, and excludes systems with 2010 ridership that was less than
500,000. The 14 systems that are used in the analysis are identified by bold text. I
omit the non-bold systems in Table A1 from the pool of control systems.

Table A1: Transit Agencies Operating Fare-free

Agency State Ridership Year Fares
(2024) Removed

City of Commerce (CCT) - Transportation CA 561,711 1962
City of East Chicago (ECT) IN 53,129 1973
AppalCart (AC) NC 1,516,410 1982
Island Transit WA 496,782 1987
City of Wilsonville (SMART) OR 197,607 1989
Cache Valley Transit District (CVTD) UT 1,495,652 1992
Mason County Transportation Authority (MTA) WA 532,336 1992
Indian River County (IRC) FL 1,384,275 1995
City of Clemson (CAT) SC 857,730 1996
Town of Chapel Hill NC 3,885,139 2002
Regional Public Transportation Inc. (RPT) ID 111,728 2004
City of Macomb (MCPT) IL 413,649 2006
City of Marion (MTS) IN 135,359 2008
City of Kokomo (COK) IN 348,230 2010
City of Corvallis (CTS) OR 1,020,099 2011
Missoula Urban Transportation District (MUTD) MT 1,298,724 2015
Athens Transit (APT) OH 321,163 2020
Chelan Douglas PTBA WA 1,358,002 2020
City of Durham NC 6,540,017 2020
City of Fairfax (CUE) VA 1,002,134 2020
City of Fort Collins - Transfort CO 2,651,954 2020
City of Tucson (COT) AZ 17,970,113 2020
Grant County Transportation Authority (GTA) WA 197,928 2020
Greater Richmond Transit Company (GRTC) VA 10,990,419 2020
Intercity Transit (I.T.) WA 4,589,073 2020
Kansas City Area Transportation Authority (KCATA) MO 12,587,935 2020
Worcester Regional Transit Authority (WRTA) MA 4,776,662 2020
City of Alexandria VA 5,351,810 2021
Mississippi State University (SMART) MS 430,049 2021
City of Rome (RTD) GA 230,824 2022
County of Hawai'i* HI 1,229,063 2022
Merrimack Valley Regional Transit Authority (MEVA) MA 2,950,920 2022
Valley Transit (VT) WA 502,014 2022
City of Albuquerque NM 6,903,362 2024
Clallam Transit System (CTS) WA 898,834 2024
Jefferson Transit (JTA) WA 256,034 2024
Montgomery County, Maryland (MCDOT) MD 18,434,535 2025

Full list of identified agencies operating fare-free in 2025. I report agency names
as reported in the National Transit Database. *The County of Hawai'i system also
operated fare free from 2005-2011.
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B Synthetic Difference-in-Difference Estimation

As a robustness check on this paper’s main analysis, I also estimate main results
under the Synthetic Difference-in-difference design proposed by Arkhangelsky et al.
(2021). Because Synthetic Difference-in-difference is not well suited to an environment
with staggered treatment, I limit this analysis to the nine agencies that adopted fare-free
transit in 2020 and omit the other five treated agencies from the sample.

I first estimate the effect of fare elimination on ridership, measured as unlinked
passenger trips. The main Synthetic Difference-in-difference estimate, which averages
treatment effects across post-treatment years, is a 0.32 log point increase in ridership
attributable to fare elimination, with a 95% confidence interval spanning 0.14-0.50. The
result implies a 38% increase in trips, which is similar to the 46% estimated for the
14 treated systems using the staggered difference-in-difference methodology (Table 3,
column 2).

Figure B1 presents results as an event study. The method is able to generate
a closely fitting pre-trend by weighting the full set of available control agencies. I
find a drop in ridership in both treated and control agencies due to the pandemic in
2020. However, the drop in ridership is significantly smaller for the nine agencies that
adopted fare-free transit in 2020 and ridership remains significantly higher until the end
of the study period. The final period of the event study indicates fare-free adoption
increased ridership by 52%, similar to the 55% estimated in the staggered difference-in-
difference method (Figure 6A). The estimates are not directly comparable because they
use different treatment samples, but the alternative method confirms a large ridership
treatment effect.

I also estimate the effect of fare elimination on level of service as measured by
vehicle revenue miles. The model estimates a 5% (0.05 log point) increase in service,
though the effect is not statistically significant. Figure B2 shows results as an event
study. The final period result implies that fare elimination induced a 13% increase
in vehicle revenue miles, relative to control agencies. The comparable full-sample,
staggered difference-in-difference estimate was 14% (Figure 6B). The result confirms
that fare-free systems tended to maintain higher service levels than control systems.
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Figure B1: Synthetic Difference-in-Difference Event Study, Unlinked Passenger Trips

Treated observation include the nine systems that adopted fare-free programs in
2020.

Figure B2: Synthetic Difference-in-Difference Event Study, Vehicle Revenue Miles

Treated observation include the nine systems that adopted fare-free programs in
2020.
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